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Objective

The objective of this project was to develop the ability to produce computer-
generated holograms which will provide volumetric reconstruction imaging.

Approach

The methodology for producing computergenerated holograms was studied.
The state-of-the-art, as described in current publications, was investigated. Empirical
studies of several techniques for producing computer-generated holograms were car-
ried through. Theoretical and practical difficulties were identified and overcome.

Results

Synthetic binary computer-generated holograms have been used to produce
real imaging of volumetric objects. A hologram of the image of an arbitrary object
can now be produced on demand. Requisite computer time per object plane for a
64 X 64 data field has been reduced by refinements in programming from over 10
minutes to about 1 minute of central processor time. The cost of producing a holo-
gram, exclusive of plotting and photography, has been reduced to about $7.00.

Conclusions

The process of real-time two-dimensional signal processing via computer-
generated holograms is within reach, and awaits only the emergence of practical
spatial light modulator devices.
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INTRODUCTION
General

The appearance of the now classic paper by Lohmann and Paris (Ref. 1)
ushered in an era of synthetic binary computer-generated holograms at various
research centers. NUC is interested in these synthetic holograms for their potential
application to real-time optical processing of underwater acoustic signal data.

This report shall describe the progress which has been made at NUC in devel-
oping expertise in computer-generated holograms intended for signal processing. The
scope of the work covers the methodology of synthetic hologram production, the
development and refinement of computer programs for hologram production, and
the demonstration in the laboratory of the functioning of these holograms.

The report shall derive the fundamental synthetic hologram equation, criti-
cize it, develop alternative methods of hologram production, discuss *“tricks of the
trade” for improving image quality, extend the development from planar to volu-
metric imaging, and finally recommend future work necessary to refine this in-house
capability.

Background

The Convolution Theorem states th.:t convolving two functions is equivalent
to multiplying their transforms. If we employ thc usual convention of allowing capi-
tal letters to represent the Fourier transforms of their respective lower-case letters,
then to within a normalization constant, the theorem states that

F// gEMh G-ty -ndEdn|=C .0 HG8) ()

where F will be used to denote the Fourier transform. We have written the relation-
ship in two variables because we shall be working in this mode throughout this report.

That the transfer function of an ordinary convex lens exhibits a form similar
to Eq. 1 has long been known. This observation naturally leads to conceiving of an
optical system capable of taking a two-dimensional transform and performing convo-
lution and hence correlation (where h and H in Eq. 1 are replaced by their complex
conjugates) “at the speed of light.” This concept, in turn, leads to the attractive pos-
sibility of a vast reduction in the computation times required by the various tasks
involved in signal processing — if, that is, the optical transparencies needed for the
computational task at hand can be produced in ‘“real time.”

“
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As an example, Fig. 1 shows an optical setup for performing a two-
dimensional correlation or convolution:

Fo L, Py Ly P2

—
illumination

- f ——|— [ ——|—-— f ——t | ol f g

Figure 1. Optical setup for performing a two-dimensional correlation or convolution.

P, is the input plane, with transmittance propprtional to the input data g (x, v). The
Fourier transform of F appears at plane P; as G (vx, vy). If the transmittance of
plane P, is proportional to H (vx, vy) or H* (x,vy), then the plane P, will contain the

convolution or correlation, respectively, of the two input functions g (x,y) and A (x, y).

Now, the transmittances of Py or Py or both should be capable of being con-
trolled at will in order for this optical device to function in a real-world signal-
processing situation. For example, since Py is a transform plane, pre-prepared holo-
graphic data might be inserted there as a fixed transmittance, and plane Py might be
one of the several “spatial light modulator” devices which at this writing are promis-
ing to emerge from the domain of research to become practical devices (Ref. 2-6).

Should the apparatus schematically shown in Fig. 1 become a reality, a vast
improvement in signal-processing rates could be achieved, particularly with the
advent of volumetric reconstruction capability.

The promise which optical signal processing thus holds out, that of the cor-
relation and convolution of two signal parameters simultaneously and sufficiently
rapidly to allow signal processing in real time, requires the production oi’ synthetic
holograms “on demand.” The entire process can conveniently be divided into that
research effort directed toward the refinement of spatial light modulator devices
and that directed toward the development of computer techniques for producing
holographic data. This report addresses itself to the latter.
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SYNTHETIC HOLOGRAMS
Characteristics

Among the attractive characteristics of synthetic holograms are —

1. The image need not physically exist. Only a mathematical description is
required. Thus, holograms of signal characteristics of oceanographic targets of inter-
est may be prepared in the absence of ‘“hard” data. Theoretical models of ship
acoustic signatures will suffice.

2. In contrast to the traditional “‘physical” production of holograms, the
object volume is not constrained in any way by illumination coherence, vibration,
air turbulence during photography, or similar effects.

3. The production of optical code translators, inverse filters, and other such
complex computational transparencies (holograms) is considerably easier when done
by computer than when done physically.

4. Unlike physically produced holograms, whose “modulation parameter” is
fixed by the ratio of intensities of the reference and object waves, the synthetic
hologram can easily be produced with an optimized modulation parameter by clever
computer programming.

5. The binary nature of the hologram itself is an advantage: A binary holo-
gram (in contrast to the usual gray-scale holograms) is insensitive to nonlinear photo-
graphic films. Thus, the transmission-exposure characteristic of the photographic
emulsion is not now a constraint.

6. Binary computer-generated holograms can be made to be more efficient
in terms of image brightness than physically produced holograms.

Fundamentals of Production

The basic idea used in the production of binary synthetic computer-generated
holograms is to produce an array of diffracting holes (transparent areas) in an other-
wise opaque film. Each such hole must somehow carry in its descriptive parameters
information which will control both the amplitude and the phase of the transmitted
(diffracted) light. To this end, the usual approach is to specify that the hologram be
illuminated in such a way that the phase of the illumination at the plane of the holo-
gram be a known function of the coordinates of the hologram plane. Then the holes
may determine the phase of the diffracted light by their relative position in the phase-
plane. The amplitude of the diffracted light may be controlled most simply by vary-
ing the size of the holes, although there are other means for achieving this, as will be
described later. It is instinctively preferable to describe the hole so that the varia-
tions in its size are orthogonal to the variations in its position in order that potential
“mixing’’ of phase and amplitude information be minimized.



For example, should the hologram be illuminated by a near-field source so
that the illumination is spherical, then one would realize a phase-sensitivity of the
holes by varying their positions radially. Amplitude control would then suggest
itself as a variation in hole size tangentially to a set of concentric circles upon the

hologram plane.

Many other such schemes can obviously be contrived, and it is conceivable
that special applications may require any one of them. In this paper we shall con-
centrate on perhaps the simplest arrangement (and the most popular in the scientific
community), wherein the illumination falls upon the hologram as a tilted planar
wave front, thus producing a phase variation across the hologram plane in one coor-

dinate only.

Much of the following work is a direct embellishment of Ref. 1, but the “fit”
is not exact. We shall depart from that classic paper as necessary. Some of the
departures will be radical. Nevertheless, the referenced paper may be said to be a
prerequisite for what is to be said here. The work to immediately follow will be
restricted to the topic of planar objects. The extension to volumetric reconstruc-

tion will be covered later in this report.

BASIC DERIVATION

By way of defining our terms, we may start by specifying a square object of
sides

Ax = Ay )

in the object plane of coordinates (x, y). In like manner, we specify the square holo-
gram of sides

Ay, = Ay, A3)
in the transform plane of coordinates (vx, v,).

We next conceive of resolution elements 8v, 8x in the transform plane and
object plane, respectively, and connect them with the relations

Axbv = 1; SxAv =1 4)

It is not necessary that these products be unity. That is, one may choose to
have arrays of resolution elements upon the hologram and upon the object plane
unequal in size. The choice of unity is simply an analytic convenience. Note that
coordinates » have dimensions of 1/length. They are the “space frequency variables”
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(cycles/centimeter, if you will). Length units to be measured upon the hologram are

found from Afv, where X is the wavelength of the light employed, and f is the focal
length of the lens (all in compatible units of course).

Now, the process to be synthesized on the computer is diagrammed in Fig. 2,
and the application of the resulting hologram is diagrammed in Fig. 3:

v sy AR TR

object

transform
ux,y)

(hologram)
U(Vx, Vy)

Figure 2. Optical process to be synthesized
on the computer.

tilted
illumination

T

hologram image
U‘pxr py’ u (X’ Y)

Figure 3. Application of the synthetically produced hologram.

If we desire a (complex) image function u (x, y) in the image plane to be a
consequence of a transform plane function U (v, v,), we can by dint of the trans-
form properties of the lens relate U and u by the familiar two-dimensioned Fourier

transform:
Uy, vy) = //u (x, ) E (=xvx -~ yvy) dxdy




where
E(x) = e¥m (6)

will be a convenient functional abbreviation. If we illuminate the transform plane
by a collumated plane wave tilted in the x direction only, the phase in the transform
plane of the incident illumination will not be a function of y, and thus takes the
form E (xgvx). We propose that, with a properly contrived binary amplitude trans-
mission in the transform (hologram) plane, where xg is the source offset:

E (xovx) H (v, vy) = KU (vx, ) (7)

We will require Eq. 7 to be valid within the squares defined by v, | < Ay[2 and
Ix],lv] < Ax/2. We will not require a valid solution outside of these squares. That is,
the product of the incident light with the hologram transmittance must be propor-
tional to the diffracted wavefront over a restricted area. X is a constant of propor-
tionality which will from time to time absorb unimportant numerical multiplicative
factors, as we shall see. The reason for restricting the solution to only a part (albeit
the significant part) of the plane is that otherwise the system will not be solvable.
Binary holograms are, after all, approximations to the “real thing.” By “releasing”
all constraints on the solution outside of the region of interest we will gain soine
analytic leverage. At any rate, we are always free to mask off unwanted parts of the
image plane.

Now if A (x,) is the complex signal in the image plane u (x,y) diffracted
from H (v, vy), then we may formally identify the diffracted wavefront as propor-
tional to the required image:

h(x,y) = rect (i-;) rect (fx-)ﬂﬂ(vx,vy)

* E [(x + xp) ¥ +yvy] dve dvy (8)
where
1if x| <1/2
rect (x) = 9)
0 otherwise

and we specify the identification:

h(x,y) = Ku(x,y) (10)
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That is, the diffracted wavefront at the image plane, & (x,y), must be at least propor-
tional to the required pattern, u (x,y).

The entire process will be a discrete rather than a continuous procedure,
since we have a digital computer to pass the equations through. To this end we
invent a rectangular mesh of points in the holograin plane, indexed by » in the x
direction and by m in the y direction. To each point of this discrete mesh we seek
to calculate and assign two parameters, corresponding to the amplitude and the
phase of the transmittance at that point. The area of the object divided by the
object resolution is the number of discrete points N2 resolvable in the image, and
because of Eq. 4, also to be calculated upon the hologram:

AxAy  [Ax 2
2=--———-= — =
N Bxby (5x) 8 N = AxAv an

At each point we erect a square v on a side, this being our resolution cell
(Fig. 4). Within each cell we produce a hole. The area of the hole will control the
amplitude, and the displacement of the hole in the x direction will control the phase
of the diffracted wavefront:

T £ Sv
—J cdv
cell —»= —1 T
méy| — — — ——-—J Wy v ov
hole - J L
[1
—] |¢— an Sv
|
|
|
' >
ndv

Figure 4. Detailed sketch of the resolution cell containing its hole.
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Note that in the y direction the hole position is a constant while the hole
size is a variable, and just the reverse holds in the x direction. Our plan now is to
take a specified u (x,y) and produce a set of Wy, and P,,, for use in constructing the
holes according to Fig. 4. The binary transmission function of the entire hologram
can then be directly written:

Ve —(n+ Byy) Sv vy - mdy
H@e y)= Z; rect[ pr s ] rect (an Y ) (12)

Now we reverse-transform Eq. 7 to obtain the image plane:

= Ve = (n + Pyy,) 6v
F(KU) = F(EH) =[/ zz rect [ . o i ]

v, - mby
* rect s E [(x +x0) vx +yvy] dvy dvy (13)
14

w

We will need the definition of the sinc function

: - sin (7x)
sinc (x) = TR (14)
and the identity
atb ¢ Zmicx atb srica €278 — g2rich
E —— = i —
et o 2mic S 2mic
a-b a

= 2bE (ca) sinc (2cb) (15)

We now interchange the integration and summation in Eq. 13 and use Eq. 11:

Sv(n+Pym+c/2)

FIKUGes) =) ) / E ((x + x0) vx] de
n mdJs

v(n+Pyyp~c/2)

6v(m+W,,m/2)
- / E(yv)) dv, (16)
8

V(’"‘ an/2)




And now use Eq. 10 and 15:
FIKU (v, )] = Ku (x,y)=h(x,y)
=zzc8v5 [(x + xp) 8v (n + Ppm)) sinc [cdv (x + x)) Wpm v
n m

« E(ymbv) sinc Y Wym v)

= ¢ (8v)? sinc [¢bv (x + xp)) zz Wi SINC (W 59)
nm

Al
=
]
k4
' 4
i
4

¢ » E{8v [(x + X0) (1 + Pam) + ym1} 5

Equation 17 is a detailed description of h(x,y). Unfortunately it is not a pure
Fourier series or it could be solved by equating it term for term to the series expan-
sion of u (x,y), to within a proportionality constant. The departures from a pure
Fourier series are three: the two sinc functions and part of the exponent. Physically,
these terms can be said to have arisen from the approximate nature of the synthetic
hologram. It is true that they may be ignored, but at the expense of degrading the
image quality. In the following work, a way will be found to an asymptotic solution
of Eq. 17. To start, the leading sinc term outside the summation may be directly
computed, then divided into the u (x,y) array to produce a new array, v(x,y). At the
same time, we may absorb the constant term c(8»)? into K.

Ku (x,y)
¢ (6v)? sinc [cbv (x + xp)]

- 4 X ; 5
: =rect (E) rect (—fvE) z z Wpm sinc (y Wpm 8v)
: n m

% r » E {80 [(x +x0) (1 + Pam) + ym1} 18)

Kv(x,y) =

: We have also at this time taken the liberty to restrict the solution to the
square image, as discussed previously. The following analysis will be simplified if the
source offset xp is chosen so that

xobv=M 19)

> o wrimgn
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an integer. Then

cbv (x +x9) = cév(ndx + x9) =c n%—i+8uxo)=c(]%+ﬁl) (20)

E {60 [(x + x0) (n + Pum) + ym1}

=FE [xév(n + B,,;,) + MP,,, + ymv] (21)

since E (Mn) = E (integer) = 1. Then from Eq. 18:

- o b
Kv(x,y) = rect (Ax) rect (Ax) ZZWM
nm

« sinc (YWym 6v) E [xndv + ymbv + xP,,,, 8v + MP,,,, (22)

Now take the transform of both sides of Eq. 22, where V = F (v):

Ax/2
KV @) = EZ Tt : // sinc (i 69)
n m Lo

Ax/[2

s EIMPyy +(n-7)xbv +(m-k)ybv + xP,,8v) dxdy (23)

The rect functions went over to the integration limits, and the sampled
Fourier transform was accomplished in the usual way by multiplying the exponen-

tial in Eq. 22 by E [(-jx - ky) év].

Now (j,k), which show in Eq. 23 for the first time, are the indices of a square
matrix which is a mapping of the (n,m) matrix of Eq. 22. We intend to construct
this (/,k) matrix from the given (n,m) data, from which V is numerically derived, and
relate it to the matrix of amplitudes W and angles P, which will allow the holes to be
produced. To this end, we proceed with the integrations in Eq. 23:

l Ax/2
KVy=—— Wam E(Man)/ Sinc (¥ Wum 6v)
* @ nz; “Ax/2

Ax/2
* El(m-k)ydv] dy / E [(n=-j)x8v + xPyn 6v] dx
-Ax/2 (249)
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Let
: Ax/2
oy = b / sinc (Y Wym 8v) E [(m - k) ybv] dy (25)
~Ax[2
Let
: Ax/2
o"=:'1—x/ E{x[(n—i) v+ Py SV]} dx (26)
~Ax[2
So that
KVg = 22 Wy E (MPam) 0y 0 Q@7
nm

We may now attempt to render the sigmas amenable to machine computa-
tion: In Eq. 15, setting @ = 0 and putting b over to b/2 results in the related identity:

b/2
/ E (cx) dx = b sinc (cb) (28)
-b/[2

from which Eq. 26 can be described:
o = 3 Ax sinc {Ax [(2-1) v + Pam 1}

=sinc(n-j+Pym) (29)

oy is more complicated: We introduce into Eq. 25 the well-known Fourier
representation of the sinc function (and temporarily drop the W subscripts):

©o W&U/ 2
k. rect { —— Ewy)du= L, E(uy) du
Wév Wov Wév
—00 ~Wév/2

= sinc (yWév) (30)




; Ax/2 : - r W2
o = i Wor / E (uy) du E [ybv¥(m - k)) dy
y=-Ax/2 u=-Wév/2

Wév/2 Ax/2
,&/ E{y[u-r&v(nl-k)”d)’d“

u=-Wév(2 “y=-Ax[2

. Wév/2
=W/ Axsmc{Ax[u+6v(m-k)”d“

Wév/2
Wév/[2
i sinc (Axu +m - k) du 31
-Wév/2
Let
w=Axu+tm-k; du‘-=‘-1A—'; 32)
. m-k+W[2
o = W/ sinc w dw (33)
m-k-W/2

where w now is simply a dummy variable.

Let us now gather this material together and rewrite Eq. 27 using what we
now know. In addition, let us go over to phasor notation, letting P and Q be decimal
parts of 27 radians, so that:

PL10I<S; 20P), 127Q| <

And let us express the complex matrix element K Vj as an amplitude Ay at an angle
Qp. Then Eq. 27 assumes the form:

Aﬂ&*" ZZ Wnm ZMan Ox Oy » 34) “
n m

12
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- zz Wom [Mpnm sinc (n - j + Py )
nm

m~kA Wy [2
sinc w dw 34)

Wam

m—k—an /2

where the two Ws are not canceled, because we will want to keep the 1/W attached
to the integral for the following work.

Equation 34 is our prescription for mapping the elements of the complex
N X N (j,k) matrix (considered as computed from the given u (x,y)) to the N X N
(n,m) matrix, which is to be found. Again, note that one could approximate the
two sigmas to unity when n =j and m = k, respectively, and put them to zero other-
wise. The resulting identification of Ay directly to Wy and likewise of Qg to MFPy
would constitute a zeroth-order approximation.

Whether or not one does that, the physical role of the parameter M is clear:
The larger M gets, the less the deviation of each hole from cell center, and the steeper
the illumination angle is required to be. The primary image formed will also move
out to higher orders as M increases.

The remaining integral o, cannot be expressed in closed form. We may find
a suitable approximation to it by the following observations: First, let us study
Fig. 5, which is a plot of the integral o).

——l‘T b w
V/
—=| W= ‘;w
-3 -2 -1 0
¢ 4 ¢
m-k=-2 m-k=-1 m-k=0 m-k=1 m-k=2

Figure 5. Plot of Ey. 33. The shaded areas represent the values of the integral for various values of m - k.
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The shaded areas in Fig. S are the integrals for various values of m - k. Con-
sidering the 1/W in front of the integral, it is heuristically clear that the m = k term
dominates and is approximately +1. For m - k = 1 we can expect g, to be small
and positive; for m - k = £2, g, is smaller yet and negative, and so on. We may now
represent o, with two alternative approximations, one for m = k and the other for
m # k. A straightforward application of a least-squares fit of a quadratic polynomial
to oy for m = k yields:

o =1-0.129 W% 395)
m=k

Figure 6 is a plot of g, for the case m = k.

As for the case when m # k, numerical plots for o, for various combinations
of m - k and W were studied. It was discovered that plots of 0, against W for various
values of (m - k) very nearly paralleled each other (see Fig. 7). This suggests that o,
can be broken into two convenient factors, one a function of W alone, which could
then be normalized, and the other a function of m - k alone, which could be called a

“denormalizing” function, if you will. These are plotted in Fig. 8 and 9, respectively.

098

0.96

least-squares fit
0.94 -~

oyform-k —

“true”
092 }— value
09—
088

0.86 ] | l | 1 ] | | |

0 01 02 03 04 05 O . ; A
wils 6 07 08 09 1

Figure 6. Plot of Eq. 33 for m =k, indicating the least-squares fit to the data.

14

Sl JEle (e ool

i

cin il




107!

PR TRE T ERER E TR, SIS

102

10-3

1078 | ] | | {
0 0.2 04 0.6 08 1
w —»

Figure 7. Plot of Eq. 33 when m # k, with m - k as a parameter, indicating the least-squares fit to the data.
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A study of the forms of these functions leads to the following suggested form for an
approximating function for oy:

2
oy (m - k,W) = a; (W) 02(m - k) = (¥) ___W______ (36)
a(m-k)* +b

The numerical data from which Fig. 7, 8, and 9 were drawn were put through

a standard least-squares approximating process, wherein the constants in Eq. 36 were
found all at once (including a coefficient on the W which is buried in a and b). The

consequences of this work are thate =17.6 and b= -2.11.

Now we may write Eq. 27 and 34 in their final form, ready for machine

computation:

Aj ZQ = 22 Wam ZMan sinc (n-j + Pym)
n m

(-1 )m+k+l ng

J176m-kp-2.11"

1-0.129 Wk ; m=k 37

Since the Ws and Ps are all mixed up in the amplitude-modifying functions
(sigmas), Eq. 37 presents onerous difficulties. A closed-form solution is probably
not possible. The solution for the (W,P) matrix as a function of the given (4,Q)
matrix can be asymptotically approached, however, by means of the following
rearrangement: Let us extract from the double sum that singular term for which
n=jand m = k. If we call the mutilated sum Ry for short, we may then proceed

to solve for Wy and Py:

Ak [0 =Wp /MPy 0x(n =) 0,(m = k) + Ry (38)
A &
k /O - R 3%

Wik {M k =
g sinc (P) (1 - 0.129 W2)
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For each (j,k) element in the matrix, A and Q are entered as W and P. Then
R and the two sigmas are computed. These are fed back into the right-hand side of
Eq. 39 to form a refined set of W and P. The process then may be repeated as many
times as is deemed sufficient. Note that since both sigmas decrease rapidly as |n - j|
and |m - k| increase, a great deal of computer time may be conserved during the
computation for R if terms to be included in R are restricted to a disk centered on
(k) and having a radius, say, of |n - j| (m - k)*> <5 or so.

Note that these disks must be handled properly when they extend beyond
the edges of the matrix. Recall that the process of sampling a bounded function
creates a sequence of ‘“‘alias” replications of that function. The same is true in two
dimensions. As a matter of fact, the optical analog is exact: Images formed from
these holograms replicate across the image plane. Also, should the hologram itself
be replicated checkerboard fashion, the image plane would not know the difference
(except for a clever idea which will be covered below).

In view of these considerations, whenever a disk (for the computation of R)
extends outside an edge of the matrix, one imagines that it is extending into a phan-
tom replicated matrix; that is, matrix elements are appropriately taken from the cor-
responding opposite edge of the matrix.

Having established a rigorous derivation of a fundamental synthetic binary

computer-generated hologram equation, we may proceed with a description of the
process of setting up data for a hologram and producing that hologram.

PRODUCTION OF COMPUTER-GENERATED HOLOGRAMS
Procedures

Step 1: Choose an object size Ax. From this, compute the resolution ele-
ment length in the hologram év = 1/Ax.

Step 2: Determine the wavelength of light to be employed, A, and the focal
length of the lens, f. The cell size (Fig. 4) may then be found from Afdv = Af/Ax.

Step 3: The Fast Fourier Transforms available work most efficiently when
the array size is a power of 2. Accordingly, select N to be 64 or 128 or the like.
Then the actual hologram size will be N cell widths, or NAfov.

Step 4: The parameters ¢ and M are design degrees-of-freedom. c is the con-

stant width of the hole, and clearly the smaller that c is, the better the phase deter-
mination at each hole will be; but of course the image will become dimmer. Thus, ¢
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is the brightness-quality trade-off parameter. As discussed above, M will determine
in which diffraction order the primary image will appear, and will also dictate the
source offset. Equation 19 assigned M as an integer, but this was for analytic tidiness.
There is a case to be made for noninteger M, to be covered below. It is important to
realize that ¢ and M are not quite independent, as argued in the next step.

Step 5: Prepare the data. Numerically describe uyp . In accordance with
Eq. 20, ¢ (#/N + M) is the argument of the sinc function by which the data array
Unm is to be divided in order to create vy, . Since in fact index n is an artifice rang-
ing from 1 to N (negative indices are not allowed in Fortran DO Loops), it must
appear in the conversion process from u to v in the following way. From Eq. 18:

Unm
(40)

Vari, =
sinc [c ( 2 -NN/ 2 + M)]

It is isnportant to notice that when n = N/2, the product cM dominates. cM
must not be allowed to become an integer, or spurious delta functions will be intro-
duced into the data for v. Aiming for an image in the first diffraction order, we may
set M = 1 and choose ¢ = 1/2. Similar choices for ¢ must be carefully made for

other Ms.

Step 6: In accordance with Eq. 23, allow the factor ¢ (8v)? to be absorbed
into the proportionality constant K, and perform a two-dimensional Fast Fourier
Transform on array v to produce array V, which is now identified as the complex

array
Ajx /O

Step 7: Present the complex (4,Q) array to Eq. 39 and the iteration descrip-
tion following it. Iterate to a solution.

Step 8: Plot, photographically reduce, and use.

Strategic Improvements

Although the process of production described above will yield usable holo-
grams, there are several strategems which can be invoked to greatly enhance the
quality of the formed image. There are aiso a few subtle flaws in the derivation
which only come to light after some production experience.
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1. First there is the matter of knowing when to stop the iteration. Equa-
tion 39 does not lend itself readily to an analysis of convergence criteria. Indeed,
there is an implicit assumption in the derivation that the process will converge. But
this is not necessarily true. Under certain pathological conditions of the input data
field, some cells in the matrix may have no solution, while others may have more
than one. Should this occur, the iteration will be perturbed by “bad spots” in the
matrix and oscillate rather than converge. By the nature of the “R disk’’ described
earlier, such bad spots will adversely influence their neighboring elements. A way
around this difficulty will be presented later in this report. Other than that, the mat-
ter of terminating the iteration is perhaps best handled empirically. Experience has
shown that five times around the loop of Eq. 39 is usually sufficient.

2. One trick which greatly improves image brightness without sacrificing
image quality is the introduction of random phase into the initial description of the
u,m field. This “smears out” the larger holes, which otherwise tend to clump in the
center of the hologram, leaving most of the hologram plane essentially opaque.

3. Associated with the idea of introducing random phase is the notion of
producing replicated holograms of the same object field (checkerboard fashion), but
introducing uncorrelated random phase in each replication. Thus, the image, which
is correlated across the replications, will be enhanced, while the background noise
will tend to cancel out.

4. It was mentioned earlier that M was analytically constrained to be an inte-
ger. This results in images formed near the zero-order bright spot in the image plane,
with other image orders located close to corresponding other-order bright spots.
These regions are particularly noisy in the image plane, and it is to one’s advantage
to locate the formed image between them. This implies that M should be an odd
number of 1/2 integers. A value of 3/2 for M works as good as any and places the
image nicely in the quietest part of the image plane (Ref. 7).

5. Closely allied with the choice of M is the choice of c. With a naive choice
of M and ¢, a phenomenon is prone to occur which has acquired in the literature the
name of the “‘gap and overlap problem.” What happens is that the hole may extend
outside of its cell and possibly overlap with the adjacent hole where, strictly speaking,
the hologram should have a transmittance of 2. These events also leave unsightly
gaps between holes.

Alittle bit of algebra applied to Fig. 4 shows that with M =3/2, the hole will
be displaced only to the edge of the cell when ¢ has a value of 1/3. This nicely ban-
ishes the gap and overlap problem, and also improves image quality, since the hole is
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smaller than when ¢ = 1/2. Since [MP| < 1/2, |P| < 1/3 when M = 3/2. That is, the
hologram should now be illuminated at an angle somewhat steeper than that which
would produce a 27 phase change across the cell.

At the same time, the input data field has to be “tricked” into “thinking”
that the image is in the 3/2 diffraction order. This is most easily done by “rotating”
the numerical data in the u,, field sideways. That is, the left- and right-hand halves
of the data field are initially simply interchanged (or the data can simply be set up
in this way) before the Fast Fourier Transform process which produces V is invoked.

6. Another trick to enhance image brightness is to scale the data array for
the amplitudes prior to plotting by, say, a factor of 1.5, and then to “clip” the ampli-
tude data to unity. At the same time, a great deal of plotter time can be eliminated
by simply deleting from the plotting list those holes for which the amplitude is below
a certain minimum. A convenient minimum point may be determined from the width
of the pen line. There is no point in attempting to plot such holes, and one might as
well conserve on plot computations.

7. It is beneficial to plot with black ink on vellum paper.

8. During the photographic reduction process, it is advisable to overexpose
and underdevelop to enhance contrast in the hologram.
THE POLYNOMIAL FIT METHOD

Reference 8 is the source of the basic idea explored here. It is important to
realize that because of the cyclic nature of P and Q, we may actually write, in the
zeroth approximation from Eq. 39 when R = 0 and the sigmas are unity:

MPy = O + L @1
where L is any integer.

This somewhat subtle point, which was overlooked in the prior derivation,
will play an important part in this section of the report.

It is now time to take a very careful look at what the phase relationship on
the hologram plane looks like under conditions of tilted plane wave illumination
and, for simplicity, M = 1. Recall that the plane of the hologram is partitioned into
cells A\fv on a side, where \ is the illumination wavelength, fis the focal length,
and 8v = 1/Ax is the resolution element, Ax being the image size. One such resolu-
tion cell, containing its hole, is shown in Fig. 10.
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Figure 10. Resolution cell and its associated illumination function,
shown for the case M = 1.

Now we can present Fig. 11, which shows the succession of phase in a string
of cells in the n direction (fixed m).

phase
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b4 Figure 11. Succession of phase samples in a string of resolution cells,
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We are now in a position to show in Fig. 12 exactly what the zeroth
approximation does.

cell nm
"
anm b H

o L 1 »n
[-Y

.' e

—— an st
Lhole center

Figure 12. The zeroth order approximation, wherein
the hole is centered at a position dictated by the
phase at the center of the resolution cell.

And we may show in Fig. 13 what any pretender to an exact solution should
accomplish.

sample Onm
e ) /umplod phase function
0 + —»n
|
4
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4x —o| |u— an
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Figure 13. The exact solution, wherein the hole is centered where the phase
is correct at the hole rather than at cell center.

That is: P locates the hole so that the phase is correct at the hole rather than
at the cell center. The iteration of Eq. 39 attempts to do just exactly this. Having
propetly located the hole, the set of W can be directly calculated from P and a
knowledge of the A,,, function, again at the hole.
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An obvious drawback to this is that a knowledge of the Fast Fourier Trans-
form at the sampling points (cell centers) is no longer enough. However, rather than
increase the “fineness” of the sampling which, to be at all effective, would expand
the size of the Fast Fourier Transform unreasonably, one may use the Q,,, data to
establish piece-wise polynomial fits over a few cells embracing the cell in question.

What happens when a phase function Q,, (n) (it is written explicitly that way
to emphasize the Q as a function of #n, there being a set of such functions indexed
by m) bobbles around #? The smooth curve in Fig. 11 becomes a sequence of dis-
jointed ‘“‘up and down” points from cell to cell. In such a case (which is certainly to
be expected from time to time) any attempt at interpolating will lead to disaster.
But since, according to Eq. 41, we are free to modify P by any integer L, let us
replace Fig. 11 by Fig. 14.

T

illumination
4an |-
sl @y (n) phase
integer displacement
ot to yield an

intersection

/ Ls— cell (n,m)
ot ey

Figure 14. Schematic illustration of a method of solution which recognizes that the
illumination phase is modulo 2n.

To recapitulate: The desired (4,Q) matrix having been established, we pro-
duce (for each m in turn) an interpolating polynomial embracing the (n,m) cell in
question (in the n direction), heeding the need to effect a translation of the matrix
during close-to-edge conditions. We then add or subtract whatever integer L it takes
to get an intersection between the illuminating phase function and the function Q.
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The horizontal distance from that intersection to the center of the cell is the exact
solution for P for that cell, giving the correct phase transmittance for the hologram
at the hole. P is then entered into the corresponding amplitude function A, (n)
(suitably interpolated itself) for an exact solution for W.

Although the function Qp, () is known to be single valued in the parameter
n, it still may happen that Q intersects the illumination phase function more than
once in a cell. Any of these solutions are equally valid, and one might be advised to
simply pick that one which is nearest to the cell center.

Then, too, it may happen that a certain cell has no such intersection for any
L (see cell 5 in Fig. 11). This cell should then be skipped entirely when the plot file
is being assembled.

Among our many experiments with different (A,Q) matrices we have never
observed Eq. 39 to diverge. Nearly always the iteration converges, but occasionally
it oscillates. The discussion in this section of this report provides a reason for this
odd behavior.

Finally, when M is other than 1, the slope of the illumination shown in Fig.
10 through 14 is no longer 45 degrees. The computational search for intersections
must be carefully modified accordingly.

THREE-DIMENSIONAL IMAGING

References 8, 9, and 10 also discuss the following material. The process of
producing a binary synthetic computer-generated hologram which will reconstruct
a volumetric image consists of successively slicing the object with planes normal to
the optical axis; assembling the numerical data field for each slice; and properly com-
bining them at the object plane in Fig. 2. The combination may then be presented
to the machinery described in the foregoing sections of this report. To this end, we
may expand Fig. 2 as shown in Fig. 15.

The matter of “properly” combining the data slices is variously resolved
depending on the optical relationships between the contents of the slices. Object
content slice-to-slice may be noninterfering (mutually offset), or the slices may
mutually scatter in a translucent, or in an opaque manner.

To reconstruct an image at a position displaced on the optical axis by an
amount corresponding to its displacement in the original object space, perhaps the
most straightforward method is to take advantage of the following observations.
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Figure 15. Optical setup to be synthesized on the computer for producing a hologram
of a volumetric object.

To describe the wavefront from plane 0 (Fig. 15) with coordinates (xy,Vp) as
it impinges upon plane 1 with coordinates (x;, y;), one may make use of the Fresnel
approximation:

a(xl,}'1)=// b(xo,)'o)E{-'i-)‘l—g(') [(xp = xp)? +0’o-)’:)2l}dxo dyyp

42)

=gy,

From the convolution theorem, Eq. 1, this may be stated as:

A, %) =B, v) E [—A;—" 02 +9 )] 43)

The exponential factor in Eq. 43 serves as a “shifter” down the optical axis.
After the object is sliced as finely as circumstances dictate, Eq. 43 is used to prepare
the data for combining. The process may possibly be done all at once at the front
, focal plane (ready for conversion to holographic plotting data) if the object slices are
nonoverlapping:

%
AGe,m)= D B(x, v,)E[—z-’ o2 +v;)] )
i
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Otherwise the data have to be converted one slice at a time, shifted, properly
combined with the next slice, reconverted, and so on:

Let
4 Ag,
Sig) =€ i+ [—5" w2+ vﬁ)] (45)

then
By ®F! (S, FB))=5B;

By ®F (S; * F(BY) = B3

.
.
.
.
.

AW, ) =B @ F! (Sc1 * F(BL1) (46)

where the symbol @ indicates complex multiplication in the case of translucent inter-
ference, and bodily replacement of data in the case of opaque interference.

RESULTS

Some representative results of our work are presented in the following plates.

Figure 16 is a reproduction of part of a hologram. (They all look more-or-
less alike to the eye.)

Figure 17 is a reproduction of the image “NUC” in the first diffraction order.
Note that the zero-order noisy background interferes considerably with image clarity.

Figure 18 shows an object which consists of a bright square in back of an
opaque cross. The reconstruction has been moved to the 3/2 order, where back-
ground interference is minimal.

Figures 19, 20, and 21 were all taken from the image field of one hologram.
The camera was simply focused at different planes along the optical axis. This set of
plates illustrates a true three-dimensional (real) image reconstruction. Here, the
adjoining ncisy background in each case is simply the out-of-focus other two letter
objects of the field.
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Figure 16. Portion of acomputer-generated synthetic binary hologram-plot. The entire plot is a square 15.36 inches
on a side. Each resolution cell in this plot is 0.24 inch on a side. ¢ = 1/3; M = 3/2. The plot is to be reduced by a
factor of 500. The plot is actually a “‘negative” in that the dark rectangles become the transparent hoh: in the

hologram.
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Figure 17. Reproduction in the first diffraction order. The zero-order noisy background
interferes with the image.

Figures 22 and 23 again were taken from one hologram. They illustrate the

capability of producing volumetric imaging for the case of opaque interference. The
object in this case was a bright disk behind an occulting dark disk. Again, the camera
was simply focused at two different places on the optical axis.

30

Data for the illustrations are:
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Ax=0422cm
N =0.5145pu
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Figure 18. Reconstruction in the 3/2 diffraction order, where the background noise is minimal.
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Figure 19. First of three images formed by one hologram. This illustration, along with Fig. 20 and 21,
illustrates volumetric imaging in the case of a non-self-interfering object.
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Figure 20. Second of three images taken from one hologram.
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Figure 21. Third of three images taken from one hologram. The images of Fig. 19, 20,and 21
were mutually separated along the optical axis by 2 cm.
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Figure 22.

This halftone, together with Fig. 23, illustrates volumetric imaging in the case of a self-interfering object.
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Figure 23. Second of two images taken from one hologram. This image was 1 cm down the optical axis from that
of Fig. 22 and illustrates the capability of volumetric imaging of an object which self-interferes (self-occults).
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PP 0 It is of note that the “polynomial fit” method requires less computer time
. } : than does the “iteration” method by a factor of about 1/5 for a 64 X 64 data field.

FUTURE WORK

The next step to speed up the process of producing binary synthetic
computer-generated holograms is to circumvent the Cal Comp plotting operation
p | and have the computer plot the hologram directly on the face of a cathode ray tube
P | (CRT). The photographic reduction could then be done directly from the CRT.
p | Since it is relatively difficult to write programs which vary the size as well as the
position of a spot on a CRT face, alternatives to Fig. 4 may have to be investigated.
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E! One attractive alternative (doubtless there are many others depending on the
ingenuity of the investigator) is given in Ref. 11 and is illustrated in Fig. 24. Here,
the cell contains two holes which always maintain the same size. Phase encoding is
accomplished, as before, by the position of their ‘‘center of gravity” in the x direc-
tion, but now the amplitude is controlled by an entirely different mechanism. The
amplitude is controlled, roughly speaking, by diffracting light which is unwanted to
orders other than that in which the primary image is being formed. This may be

! seen from Eq. 47:

| AEQ)=A E [P,,,,, "’%]"’Al E [P,.m -%] i
= 24, c0s (1d) E (Pum) Y '
3 dby —= j
1
1
‘ §
4
pary N
e % B 7% 1
>

— = Pm&!

nbv

Figure 24. Resolution cell containing two-hole method of encoding phase and amplitude.
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where A, is the amplitude of an individual hole. It can be seen that the resulting
amplitude depends directly on the spacing, d, and in particular that the amplitude is
zero whend = 1/2.

This process can be expected to suffer many of the same fine points as the
iteration method, Eq. 39, experiences. In particular, the gap-and-overlap problem
discussed earlier is with us again here. However, the holes may be aligned vertically,
thus diffracting unwanted light in the y direction. A quick analysis similar to Eq. 47
will show that the resulting amplitude control by hole spacing is still valid.

These and other avenues of hologram construction are to be explored. Even-
tually it is hoped that these techniques can be brought directly to bear on the spatial
light modulator devices referred to in the Introduction.

CONCLUSIONS

In-house expertise at NUC can now be said to have reached the point where
data for the construction of a hologram which will produce volumetric imaging can
be produced at will for an arbitrary object.

The work thus far has employed Cal Comp plots followed by photographic
reduction because of convenience, and because the “how-to” aspects of this effort
have been more important than speed of hologram formation at this time. Image
quality has been steadily improved, and at the same time production costs have been
reduced, by means of careful refinement of computer programs.

The process of optical real-time signal processing via computer-generated
holograms is within reach, and awaits the emergence of practical spatial light modu-
lator devices to become a reality.
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